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Sign-independent synchronization in unidirectionally coupled chaotic systems
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In this paper, a synchronization scheme independent of the sign of the driving signal is developed and
analyzed. The corresponding synchronization phenomenon is termed sign-independent synchronization in this
context. In our coupling scheme, an even coupling function is used at the response in an attempt to make the
response independent of the sign of the driving signal. Furthermore, the Ja¢abéhimence the stability
defined on the synchronization manifold of sign-independent synchronization systems can be made identical to
that of a correspondingctive-passive decompositisystem. Hence the conditions for achieving stable sign-
independent synchronization can be generally established as a trivial case in unidirectionally coupled chaotic
systems where the method attive-passive decompositias applicable. Through numerical experiments
performed on both continuous and discrete systems, we demonstrate that in-phase synchronization can be
maintained even if the phase of the driving signal is randomly inverted. We believe the proposed chaotic
synchronization will find important application in digital communicatiof&1063-651X99)09111-4

PACS numbd(s): 05.45-a

I. INTRODUCTION narrower base band in frequency domaiit the receiver, a
replica of the chaotic signal is required so that the binary

In 1990, Pecora and Carrdll] demonstrated that certain data can be detected using a correlation detection algorithm.
subsystems of chaotic systems could be made to synchroni#e such detection processes, since only the correlation prop-
by linking them with common signals. Ever since then, syn-€rty of the chaotic signal is used, correct recovery of the
chronization of chaotic systems has become one of the mo§inary data can still be possible even if the signal-to-noise
interesting research topics in the study of chaos. Differentatio is very low.
synchronization phenomena such as identicaphasé syn- However, one of the key problems to be addressed in
chronization[1-9], antiphase synchronizatiqi0, 11, and ~ chaotic spread spectrum communication systems is the syn-
generalized synchronizatiji2—14 were reported. The ba- Cchronization of the chaotic spreading signal in both the trans-
sic idea of these synchronization methods is to seek a subpdHtter and the receiver. Attempts have been made to solve
(or a subsystein which possesses negative conditionalthis problem under certain assumptidi$,16| or based on
Lyapunov exponent$CLE’s) on a defined synchronization Particular model§17,18. In the inchoate work§15,16 on
manifold. Thus the subpart is insensitive to initial conditions.chaotic spread spectrum systems, the synchronization is
Two representative methods reflecting the captioned idea af@ken asa priori by assuming that both the initial conditions
active_passive decompositidﬁ\PD) [2’13] and parameter and the initial time of the chaotic system are known. This
adjusting[7]. assumption can cause difficulty in implementation, espe-

In recent years, secure communication via synchronize&ia”y whenrandom accessommunication or a real chaotic
chaos has been intensely studied. Unfortunately, the sensiti¢€quence is requiredn some applications, the chaotic sys-
ity of chaotic synchronization makes chaotic communicatiorfem is used to generate chaotic data of a certain length; then
schemed1,2,9 using analog information not robust to ex- the set of chaotic data is stored and repeatedly used. The
ternal interference. This is because the quality of the recovProduced signal is a pseudorandom signal that is not really
ered information in such schemes is much affected by th@haotlc in that it is periOdial.TheoretiCa”y, the autosynChrO'
synchronization error, which tends to be significant if thenization property of chaotic systems naturally meets the re-
transmission channel is very noisy. Digital chaotic commu-duirement of random access. However, autosynchronization
nication schemes, associated wihread spectrum commu- Seems difficult to achieve in the chaotic spread spectrum sys-
nication techniques, were proposéti5—18 with claims of ~ tem. The fundamental difficulty is incurred by the multipli-
robustness. Their idea is based on the fact that chaotic si%apon of the bipolar data signal, which will change the po-
nals have the features of nonperiodicity and short time corlarity of the driving signal randomly and then spoil the
relation, which in the frequency domain correspond to aphasesynchronization if conventional techniques of chaotic
broadband continuous spectrum. Thus, a chaotic signal f&Ynchronization are used directly. Our motivation for this
naturally a good candidate for use as a spreading signal iftudy is to develop an autosynchronization scheme that en-
spread spectrum communication. In a chaotic spread spegUres in-phase synchronization even when the phase of the
trum system, a chaotic spreading signal is modulated by mulriving signal is randomly inverted.
tiplication with a binary data sequence which is chosen from
{—1,+1} and updated at a lower raf@hich corresponds to a Il. THEORY

Consider a chaotic drive system

*Electronic address: mknan@telekbird.com.cn x=F(x), (H)
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where F:R"—R". The transmitted signal is a scalar signal passive system. Then the synchronization is linearly stable
given byh,=g(x) (g:R"—R). Our intention is to construct and the deviatiore converges to zero asymptotically. In the

a response systegnwhereby sign-independent synchroniza- following, we will demonstrate that negative CLE’s can be
tion (SIS can be achieved, i.e., the response system can kgenerally guaranteed by using a decomposition which is as-
synchronized to the drive system no matter whether it issociated with an APD system and which has the same Jaco-
driven by +h, or —h,. We also demand that the switching bian. To show this, we derive thé&ee the Appendijx
of the driving signal betweert h, and—h, should not cause

transients during the synchronization process. To achieve dG(x,c) dg(x)

SIS, we consider unidirectionally coupled systems with the DG(X)=DF(X)~—— —4x ,
following conditions:(a) the synchronization state given by =0

y=X is aninvariant subspace defined on_the_ whole space OfwhereDF(-) is the Jacobian df (). Note that the Jacobian
the coupled systems, say the synchronization maniflt; jefineq by Eq(4) is independent of/(-) andv'(-). Fur-
the driving signal is coupled into the response systeMye mqre it is not difficult to show that this Jacobian is the

through a coupling functi_on of even symmetfg) the re-  oome ag that in Ed5) almost everywhergwe say “almost
sponse possesses negative conditional Lyapunov exponeng/erywhere,, becauss(-) is piecewise differentiable, but

The captioned co_ndl'qons are set,'respectwelly, 'to make SUfese break points have zero Lebesgue me@sure
that the synchronization manifold {5 existent,(ii) indepen-

dent of the sign of the driving signal, afid ) asymptotically v=G(v.h.— 5
stable. As we have explained, SIS can be established as long y=6lh=gy), 2
as the three condition®), (b), and(c) are satisfied. At first where the coupling function is chan _

. e ged tfy,hy)=h
glance, the coexistence of conditiofts and(c) seems ques- —g(y), while th[()a dgcompositiom;(- ) remains thxe sa;(ne

tionablg or nontrivi'al. It seems really dubious that tha?e as in Eq.(2). Obviously, the synchronization manifold exists
waysexists a coupling function of even symmetry that SImUI-gith such a response system and possesses the same CLE's

taneo_usly gu,arantees a pz_issive response system wigy;, Eq.(2), although Eq(5) does not permit SIS in general.
negative CLE’s. In the following context, we shall demon- Note that Eq(5) can always be rewritten as

strate that, by using our designed coupling, the specified con-
ditions not only can coexist but also can be generally estab- y=G,(y,h,) 6)
lished in unidirectionally coupled systems. s

Consider the response system given by

y=G(y.c(y,ho),

where G:R"XR—R" and G(x,c)=F(x) if and only if ¢
=0.c:R"XR—R is a coupling function given in the follow- Galy,h)=G(y,h,—g(y))
ing form:

4

which is a form of APD[2]. The transformation between Eq.
@) (5) and Eq.(6) is equivalent since given either form, the
other can then be derived by using

or

h,)—v(h
c(y,hy)= % 3 G(y,c)=G,(y,c+g(y)).

where hy=g(y). Assume thatv:R—R is a continuous, Thus, for a given APD system in the form of E@) with
piecewise differentiable function of even symmetry, i.e. known G(-,-) andg(-), a SIS system can then be con-
v(h)=v(—h). v’(h) is the derivative of/(h). With such structed by using a couplmg funptlon of even symmetry in
a coupling, synchronization can occur on an invariant subthe form of Eq.(3). Particularly, if we set/(-) to be the
space given by=x. Note that the coupling function is even absolute function, the coupling function will be

symmetric with respect tdh,, i.e., c(y,hy)=c(y,—h,),

hence the state variabjeremains independent of the sign of c(y,h,)=sgrig(y)Ih,—g(y) )
the driving signal. Thus switching between the in-phase and .

the antiphase transmission causes no transients during tR@d the corresponding SIS system

synchronization process. Therefore conditiahand condi- )

tion (b) are satisfied using the coupling function defined in y=Ga(y,sgrig(y)]hy)

Eq. (3). To testify the stability of the synchronization mani- .

fold, we investigate the linearized equation that governs thés then established.

evolution of the deviatiore=y—x, which is given by a lin- So far, the SIS scheme has been introduced and analyzed,
ear differential equation and the relationship between the SIS scheme and the APD
has been studied. It is concluded that SIS can be established

e=DG(x)e, in coupled systems where the APD method in the form of

Eq. (6) is applicable. The generality of APD in unidirection-
whereDG(x), conditioned orx, is the Jacobian matrix de- ally coupled systems has been studied 2il3], based on
fined by the partial derivative d&(y,c(y,h,)) ony under the which we conclude that SIS can also be generally established
synchronization conditiory=x. The CLE's will emerge in uniderectionally coupled systems. In the following sec-
from the ergodic average of the Jacobian. It is well knowntion, we will demonstrate the idea of SIS with numerical
[1,2] that, if all CLE's are negative, Eq2) represents a experiments.



PRE 60

FIG. 1. Distribution of the maximum real part of the eigenvalues

of the Jacobian which is conditioned ap andx,.

IIl. NUMERICAL EXPERIMENTS

In the following examples, we sat(h)=|h|. The cou-
pling function is then written in the form of Eq7). There-
fore the response system is confirmed, if bgth) and G
(-,-) are given.

Example 1: Resler systemConsider the Rssler system,

)'(l:Xl(X2_4)+21
X2=—X1~ X3, (8a)
X3:X2+ 045(3
Let
g(x)=x3+0.9,

where the constant bias 0.9 is introduced tolsgto zero
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FIG. 3. (a) Modulated signab(t)h, ; (b) recovered chaotic car-
rier hy; (c) bipolar datab(t).

y1=Yi(y.—4)+2,
Y2=—Y1— Y3, (8b)
y3=Y,+0.45 sgiy;+ 0.9)|hx| —0.405,

where the Jacobian matrix is

Xo—4 X, 0
DG(x)=| -1 0 -1},
0 1 0

which is conditioned orx; andx,. The distribution of the
maximum real part of the eigenvalues is depicted in Fig. 1.
The projection of the Resler attractor on the; —x, plane is
shown in Fig. 2. On average, the response system has a nega-
tive maximum CLE {,,,=—0.12), hence synchronization

mean, as required in spread spectrum communication. Byan be realized in practice. The results of our synchroniza-

applying Eq.(7), the coupling function is
c(y,hy) =sgrly;+0.9)h,| —y;—0.9.
We set the decomposition to
G:G(y,c)=F(y)+[000.4%]".

The response for SIS is then given by

FIG. 2. Projection of Rssler attractor ox;, X, plane.

tion experiment performed on the coupledsRler systems
are shown in Figs. 3 and 4, where the synchronization error
defined by||x—y| decays to zero at a steady state. The syn-
chronization is maintained during both the in-phase and the
antiphase transmission without any transient after each
switching. To test the robustness of the synchronization, we
add a random noise bounded withi0.15 and+0.15 to the
driving signal. We do not observe a large synchronization
error burst as reported in Rf3] once synchronization is
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FIG. 4. Experiment on coupled Rsler systemga) Synchroni-
zation error given byl|x—y|| without noise.(b) Synchronization
error under weak additive noise bounded within0.15,+0.15).



5442 NAN, TSANG, WONG, AND SHI PRE 60

obeys the exponential law for any randomly chosen initial
I E conditions, which means that the synchronization is of the
robust kind[3].

Recently, Zhou and Chei8] proposed a digital chaotic
communication system based on in-phase and antiphase syn-
chronized Haon maps, and successfully demonstrated the
robustness of the system to additive noise and quantization
error. In their scheme, the recovered chaotic carrier is just
correlated but not identical to the original during—"1"
10~ J : J transmission even if no noise is present. A transient is inevi-

1 11 21 31 41 tably induced after each switch between in-phase transmis-

tme sion and antiphase transmission. In addition, the conditions

that allow their idea cannot be generally established in most
chaotic models and thus the method is not general. In con-
trast with their synchronization scheme, SIS can be generally

attained. The synchronization error is observed to be th&Stablished in unidirectionally coupled systems. The chaotic

same order as the additive nojseirve (b) in Fig. 4]. carrier in either in-phase+1) or antiphase(—1) transmis-
According to the relationship between SIS and APD dis-Sion can pe fully recovered, and swnqhmg beMeen different

cussed in Sec. Il, thgs component in the corresponding transmission modes causes no transient during the_ synchro-

APD system is derived to be nization process, which means better performance in poten-

tial communication applications. Besides, the synchroniza-
tion error in our experiment on ten maps also converges
to zero exponentially. Thus it can be predicted that robust-

Obviously, the corresponding response possesses the saftess Similar to that of Zhou and Chen can be obtained.
Jacobian matrix as that in Eq8b). Synchronization with In the two examples, stability of the synchronization is

such a response system was reported as an example of Appamined by CLE’s. This relies on an ergodic average and is
in Ref.[2]. generally obtained numerically. In the following example,

Example 2: Henon magSimilarly, SIS can also be estab- W€ will show that the stability of the SIS can also be proved

lished in discrete chaotic systems, for example the Henofi90rously using the method of contraction mafs].
map formulated by Example 3: Logistic mapThe dynamics of zero mean

logistic maps are

TTT

10+

T

107

T

sychronization error

10—12

T

FIG. 5. The SIS experiment performed on the coupleéddte
maps. Synchronization error defined |py(n) —y(n)||.

Y3: y2+ 045(3 .

X1(N+1)=0.3(n) —Xxy(n)?+ 1.4, X 1= 1252
o

Xa(N+1)=x4(Nn). Let
We let g(x)=x.
g(xX)=—x2+0.5¢+1 One decomposition for SIS is

_1_ 2_
and G(y,c)=1-2y“—4yc.

G:G(y,c)=F(y)+[cO]" Using Eq.(7), the response is then formulated as

=1+2y2—4|X Y,
Then, by applying Eq(7), the response is Yn+1 Y~ 4XnYal

Note thatlyn+1_xn-¢—l| = 2(|Xn| - |yn|)2$2|yn_xn|2- Obvi-

y1(n+1)=—-0.2y,(n)+0.4 ously, oncely,—x,|<1/2, the quantityly,—X,|, controlled
B 2 by a contraction map, converges to zero. From the ergodic
+sg —y1(n)%+0.5y,(n)+ 1] hy(n)], property of chaotic systems, this condition can always be
satisfied for randomly chosen initial conditions supposing the
y2(n+1)=yi(n). response is bounded. Thus SIS can be achieved.
The Jacobian of the nonautonomous systefif is %], ei- V. DISCUSSION

genvalues of which are all confined to within the unit circle

(IN]2=0.2). Since the Jacobian is time invariant, the Note that, if g(-) and F(-) are odd symmetric, i.e.,
Lyapunov multiplier is the same as the modulus of the ei-g(x)=—g(—x) and F(x)=—F(—x), sincec(*=x,h,)=0,
genvalue. Therefore, the response ipassivesystem and and *=x are both trajectories of the system, two invariant
any deviation from the synchronization manifold will asymp- subspaces will emerge defined, respectivelyybyx andy
totically vanish. It is verified in Fig. 5 that the synchroniza- = —x, the in-phase synchronization manifold and antiphase
tion error, defined byly(n) —x(n)|, trails off exponentially  synchronization manifold. Owing to the symmetric property
at a rate ofa" (a~0.4472). In our numerical experiments, of the system, the coupled systems will have identical stabil-
we find that the convergence of the synchronization erroity on the two manifolds. In the event that both manifolds are
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stable, the eventual state of the coupled systems will be afontinuous chaotic signals were used, the bipolar data signal
either in-phase synchronization or antiphase synchronizatiotan be smoothed out before modulation to avoid the sharp
depending only on the initiation point of the trajectory. In transition of the transmitted signal between in-phase and an-
such systems, the boundary between the attracting basins @phase transmissions that would be easy to detect. Such ma-
the two synchronization manifolds may have Compncatemipulation will cause transients, but will not affect the correct
fractal structurd19]. Thus any disturbance may cause therecovery of the data as long as the duration of one data bit is
trajectory to switch randomly between the two basins. ThisSet large enough compared with the transient time. _
may cause error in potential communication applications. !t should be pointed out that sign-independent synchroni-
However, in most cases the antiphase synchronization can B&tion is different from the antiphase synchronization re-
easily removed from the coupled system by selecting a funcPorted in[10,11,18. In antiphase synchronization, the state
tion g(-) that is not odd symmetric. For example, the addi-variables of the two chaotic systems, namely drive and re-
tion of a constant bias tg(x) generally causes a loss of SPOnse, have the same amplitude but opposite sign. In sign-
symmetry so that the antiphase synchronizatipn,—x, is  independent synchronization, however,phasesynchroni-
no longer an invariant subspace of the coupled systems, bé&tion is established even if the phase of the driving signal is

cause a trajectory initiated from the subspace cannot coff@ndomly inverted. o
tinue to remain on it. In this paper, an autosynchronization scheme has been

Robustness of chaotic synchronization always varies fopStablished aiming to solve the synchronization problem in
different choices of model or different forms of coupling. It chaotic spread spectrum communication systems where the
can be predicted that better robustness can be obtained if ti§§iving signal is modulated by a bipolar data sequence. Veri-
synchronization is globally stable having negative cLg'sfication is conducted through numencql experiments per-
with as large a magnitude as possible. The choice of functiofPrmed on several commonly used chaotic models. By deriv-
v(-) also influences the robustness of the synchronizatiori"d @n identical Jacobian in a corresponding APD system, we
although the Jacobian of the response is independent of cOnclude that sign-independent systems can be generally es-
(-) in the proposed SIS system. The reason is that the Jacigblished as a trivial case in umdwecnonally coupled chaonp
bian only describes the variation of a deviation that is asSYStems. Our research is ongoing, and we shall explore its
sumed infinitesimal. When the deviation grows largdr,)  Potential applications in the near future.
will affect the synchronization. For simplicity and ease of
implementation by circuitry, we set(-) to be the absolute
function. However, if we choose(h) to be differentiable at ACKNOWLEDGMENT
h=0, due to the symmetric property of the functiari(0)
will be equal to 0, which will cause the control signal pro-
duced by the coupling function to be infinite. This can be
avoided by turning off the control and letting the response
run autonomously in the region abolj=0. Synchroniza-
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tion can still be maintained provided the area of the region is APPENDIX
chosen appropriately to ensure negative CLE’s. h
We have observed in numerical simulation that the com- DG(x)=w
munication system based on sign-independent synchronized ay y=x
Henon maps is not very sensitive to parameter mismatch.
This reminds us of another issue commonly concerned with _9G(y,c) N dG(y,c) dc(y,h)|
chaotic communication, that is, the security. It is required ay Jc ay \y:X’

that the receiver system be very sensitive to parameter mis-

match, so that a third party can lock into the communicationrwhere h=b*g(x).  Since c(y,h)=[v(h)—v(g(y))l/
with a probability approaching zergWe assume that the v’(g(y)), then

eavesdropper has known in advance the structure of the sys-

tem and means to lock into the communication by trying gc(y,h)  dv(g) dg(y) 1
every parameter in some defined region in the parameter ay - dg dy v'(g)
spacé. On the other hand, robustness requires that the re-

ceiver system be insensitive to parameter mismatch and ex- S Tv(h) — i 1
ternal interference, otherwise the communication will be [v(h=v(g(yD] ay\v' (g(y))’
very difficult to establish in practice. The two aspects seem

incompatible in this sense. Thus, as a trade off, such a comJnder the synchronization conditign=x, we have
munication system can still be considered secure by assum-

ing that the third party does not know the structure of the v(h)—v(g(y))=0,
system, or that the eavesdropper will be frustrated if he tries
to retrieve the data using conventional linear signal process- c(y,h)=0,

ing methods. Moreover, our design is based on active-

passive decomposition, which allows the flexibility to useand note

high-dimensional hyperchaotic systems and will then make it

more difficult for a third party to detect the structure of the vi(g)= dv(g)
system[8,9]. In the communication applications in which dg




5444 NAN, TSANG, WONG, AND SHI PRE 60

Then
DG(x)=dZ(X)— ﬁG;x,c) d?j(x)} .
acly.h)  dg(y) X c A,

ay dy
Recall thatG(x,0)=F(x). Then we get
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