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Sign-independent synchronization in unidirectionally coupled chaotic systems
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In this paper, a synchronization scheme independent of the sign of the driving signal is developed and
analyzed. The corresponding synchronization phenomenon is termed sign-independent synchronization in this
context. In our coupling scheme, an even coupling function is used at the response in an attempt to make the
response independent of the sign of the driving signal. Furthermore, the Jacobian~and hence the stability!
defined on the synchronization manifold of sign-independent synchronization systems can be made identical to
that of a correspondingactive-passive decompositionsystem. Hence the conditions for achieving stable sign-
independent synchronization can be generally established as a trivial case in unidirectionally coupled chaotic
systems where the method ofactive-passive decompositionis applicable. Through numerical experiments
performed on both continuous and discrete systems, we demonstrate that in-phase synchronization can be
maintained even if the phase of the driving signal is randomly inverted. We believe the proposed chaotic
synchronization will find important application in digital communications.@S1063-651X~99!09111-4#

PACS number~s!: 05.45.2a
n
n
n
o

en

-
p
a

n
s
a

ze
it

io
x-
o
th
he
u
-

s
o

l
l

pe
u

om

ary
hm.
rop-
the
ise

in
syn-
ns-
lve

n is
s
is

pe-
c
s-
then
The
ally
-
re-
tion
sys-
i-
o-

tic
is
en-

f the
I. INTRODUCTION

In 1990, Pecora and Carroll@1# demonstrated that certai
subsystems of chaotic systems could be made to synchro
by linking them with common signals. Ever since then, sy
chronization of chaotic systems has become one of the m
interesting research topics in the study of chaos. Differ
synchronization phenomena such as identical~in-phase! syn-
chronization@1–9#, antiphase synchronization@10, 11#, and
generalized synchronization@12–14# were reported. The ba
sic idea of these synchronization methods is to seek a sub
~or a subsystem! which possesses negative condition
Lyapunov exponents~CLE’s! on a defined synchronizatio
manifold. Thus the subpart is insensitive to initial condition
Two representative methods reflecting the captioned idea
active-passive decomposition~APD! @2,13# and parameter
adjusting@7#.

In recent years, secure communication via synchroni
chaos has been intensely studied. Unfortunately, the sens
ity of chaotic synchronization makes chaotic communicat
schemes@1,2,9# using analog information not robust to e
ternal interference. This is because the quality of the rec
ered information in such schemes is much affected by
synchronization error, which tends to be significant if t
transmission channel is very noisy. Digital chaotic comm
nication schemes, associated withspread spectrum commu
nication techniques, were proposed@15–18# with claims of
robustness. Their idea is based on the fact that chaotic
nals have the features of nonperiodicity and short time c
relation, which in the frequency domain correspond to
broadband continuous spectrum. Thus, a chaotic signa
naturally a good candidate for use as a spreading signa
spread spectrum communication. In a chaotic spread s
trum system, a chaotic spreading signal is modulated by m
tiplication with a binary data sequence which is chosen fr
$21,11% and updated at a lower rate~which corresponds to a

*Electronic address: mknan@telekbird.com.cn
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narrower base band in frequency domain!. At the receiver, a
replica of the chaotic signal is required so that the bin
data can be detected using a correlation detection algorit
In such detection processes, since only the correlation p
erty of the chaotic signal is used, correct recovery of
binary data can still be possible even if the signal-to-no
ratio is very low.

However, one of the key problems to be addressed
chaotic spread spectrum communication systems is the
chronization of the chaotic spreading signal in both the tra
mitter and the receiver. Attempts have been made to so
this problem under certain assumptions@15,16# or based on
particular models@17,18#. In the inchoate works@15,16# on
chaotic spread spectrum systems, the synchronizatio
taken asa priori by assuming that both the initial condition
and the initial time of the chaotic system are known. Th
assumption can cause difficulty in implementation, es
cially when random accesscommunication or a real chaoti
sequence is required.~In some applications, the chaotic sy
tem is used to generate chaotic data of a certain length;
the set of chaotic data is stored and repeatedly used.
produced signal is a pseudorandom signal that is not re
chaotic in that it is periodic.! Theoretically, the autosynchro
nization property of chaotic systems naturally meets the
quirement of random access. However, autosynchroniza
seems difficult to achieve in the chaotic spread spectrum
tem. The fundamental difficulty is incurred by the multipl
cation of the bipolar data signal, which will change the p
larity of the driving signal randomly and then spoil thein-
phasesynchronization if conventional techniques of chao
synchronization are used directly. Our motivation for th
study is to develop an autosynchronization scheme that
sures in-phase synchronization even when the phase o
driving signal is randomly inverted.

II. THEORY

Consider a chaotic drive system

ẋ5F~x!, ~1!
5439 © 1999 The American Physical Society
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whereF:Rn→Rn. The transmitted signal is a scalar sign
given byhx5g(x) (g:Rn→R). Our intention is to construc
a response systemy whereby sign-independent synchroniz
tion ~SIS! can be achieved, i.e., the response system ca
synchronized to the drive system no matter whether i
driven by1hx or 2hx . We also demand that the switchin
of the driving signal between1hx and2hx should not cause
transients during the synchronization process. To ach
SIS, we consider unidirectionally coupled systems with
following conditions:~a! the synchronization state given b
y5x is an invariant subspace defined on the whole space
the coupled systems, say the synchronization manifold;~b!
the driving signal is coupled into the response syst
through a coupling function of even symmetry;~c! the re-
sponse possesses negative conditional Lyapunov expon
The captioned conditions are set, respectively, to make
that the synchronization manifold is~i! existent,~ii ! indepen-
dent of the sign of the driving signal, and~iii ! asymptotically
stable. As we have explained, SIS can be established as
as the three conditions~a!, ~b!, and~c! are satisfied. At first
glance, the coexistence of conditions~b! and~c! seems ques
tionable or nontrivial. It seems really dubious that thereal-
waysexists a coupling function of even symmetry that sim
taneously guarantees a passive response system
negative CLE’s. In the following context, we shall demo
strate that, by using our designed coupling, the specified c
ditions not only can coexist but also can be generally es
lished in unidirectionally coupled systems.

Consider the response system given by

ẏ5G„y,c~y,hx!…, ~2!

where G:Rn3R→Rn and G(x,c)5F(x) if and only if c
50. c:Rn3R→R is a coupling function given in the follow
ing form:

c~y,hx!5
v~hx!2v~hy!

v8~hy!
, ~3!

where hy5g(y). Assume thatv:R→R is a continuous,
piecewise differentiable function of even symmetry, i.
v(h)5v(2h). v8(h) is the derivative ofv(h). With such
a coupling, synchronization can occur on an invariant s
space given byy5x. Note that the coupling function is eve
symmetric with respect tohx , i.e., c(y,hx)5c(y,2hx),
hence the state variabley remains independent of the sign
the driving signal. Thus switching between the in-phase
the antiphase transmission causes no transients during
synchronization process. Therefore condition~a! and condi-
tion ~b! are satisfied using the coupling function defined
Eq. ~3!. To testify the stability of the synchronization man
fold, we investigate the linearized equation that governs
evolution of the deviatione5y2x, which is given by a lin-
ear differential equation

ė5DG~x!e,

whereDG(x), conditioned onx, is the Jacobian matrix de
fined by the partial derivative ofG„y,c(y,hx)… on y under the
synchronization conditiony5x. The CLE’s will emerge
from the ergodic average of the Jacobian. It is well kno
@1,2# that, if all CLE’s are negative, Eq.~2! represents a
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passive system. Then the synchronization is linearly sta
and the deviatione converges to zero asymptotically. In th
following, we will demonstrate that negative CLE’s can b
generally guaranteed by using a decomposition which is
sociated with an APD system and which has the same J
bian. To show this, we derive that~see the Appendix!

DG~x!5DF~x!2
]G~x,c!

]c

dg~x!

dx U
c50

, ~4!

whereDF(•) is the Jacobian ofF(•). Note that the Jacobian
defined by Eq.~4! is independent ofv(•) and v8(•). Fur-
thermore, it is not difficult to show that this Jacobian is t
same as that in Eq.~5! almost everywhere@we say ‘‘almost
everywhere’’ becausev(•) is piecewise differentiable, bu
these break points have zero Lebesgue measure#,

ẏ5G„y,hx2g~y!…, ~5!

where the coupling function is changed toc(y,hx)5hx
2g(y), while the decompositionG(•,•) remains the same
as in Eq.~2!. Obviously, the synchronization manifold exis
with such a response system and possesses the same C
as in Eq.~2!, although Eq.~5! does not permit SIS in genera
Note that Eq.~5! can always be rewritten as

ẏ5Ga~y,hx!, ~6!

which is a form of APD@2#. The transformation between Eq
~5! and Eq. ~6! is equivalent since given either form, th
other can then be derived by using

Ga~y,hx!5G„y,hx2g~y!…

or

G~y,c!5Ga„y,c1g~y!….

Thus, for a given APD system in the form of Eq.~6! with
known G(•,•) and g(•), a SIS system can then be co
structed by using a coupling function of even symmetry
the form of Eq.~3!. Particularly, if we setv(•) to be the
absolute function, the coupling function will be

c~y,hx!5sgn@g~y!#hx2g~y! ~7!

and the corresponding SIS system

ẏ5Ga„y,sgn@g~y!#uhxu…

is then established.
So far, the SIS scheme has been introduced and analy

and the relationship between the SIS scheme and the A
has been studied. It is concluded that SIS can be establi
in coupled systems where the APD method in the form
Eq. ~6! is applicable. The generality of APD in unidirection
ally coupled systems has been studied in@2,13#, based on
which we conclude that SIS can also be generally establis
in uniderectionally coupled systems. In the following se
tion, we will demonstrate the idea of SIS with numeric
experiments.
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III. NUMERICAL EXPERIMENTS

In the following examples, we setv(h)5uhu. The cou-
pling function is then written in the form of Eq.~7!. There-
fore the response system is confirmed, if bothg(•) and G
(•,•) are given.

Example 1: Ro¨ssler system. Consider the Ro¨ssler system,

ẋ15x1~x224!12,

ẋ252x12x3 , ~8a!

ẋ35x210.45x3 .

Let

g~x!5x310.9,

where the constant bias 0.9 is introduced to sethx to zero
mean, as required in spread spectrum communication.
applying Eq.~7!, the coupling function is

c~y,hx!5sgn~y310.9!uhxu2y320.9.

We set the decomposition to

G:G~y,c!5F~y!1@0 0 0.45c#T.

The response for SIS is then given by

FIG. 1. Distribution of the maximum real part of the eigenvalu
of the Jacobian which is conditioned onx1 andx2 .

FIG. 2. Projection of Ro¨ssler attractor onx1 , x2 plane.
y

ẏ15y1~y224!12,

ẏ252y12y3 , ~8b!

ẏ35y210.45 sgn~y310.9!uhxu20.405,

where the Jacobian matrix is

DG~x!5F x224 x1 0

21 0 21

0 1 0
G ,

which is conditioned onx1 and x2 . The distribution of the
maximum real part of the eigenvalues is depicted in Fig.
The projection of the Ro¨ssler attractor on thex12x2 plane is
shown in Fig. 2. On average, the response system has a n
tive maximum CLE (lmax520.12), hence synchronizatio
can be realized in practice. The results of our synchron
tion experiment performed on the coupled Ro¨ssler systems
are shown in Figs. 3 and 4, where the synchronization e
defined byix2yi decays to zero at a steady state. The s
chronization is maintained during both the in-phase and
antiphase transmission without any transient after e
switching. To test the robustness of the synchronization,
add a random noise bounded within20.15 and10.15 to the
driving signal. We do not observe a large synchronizat
error burst as reported in Ref.@3# once synchronization is

FIG. 3. ~a! Modulated signalb(t)hx ; ~b! recovered chaotic car
rier hy ; ~c! bipolar datab(t).

FIG. 4. Experiment on coupled Ro¨ssler systems.~a! Synchroni-
zation error given byix2yi without noise.~b! Synchronization
error under weak additive noise bounded within~20.15,10.15!.
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5442 PRE 60NAN, TSANG, WONG, AND SHI
attained. The synchronization error is observed to be
same order as the additive noise@curve ~b! in Fig. 4#.

According to the relationship between SIS and APD d
cussed in Sec. II, they3 component in the correspondin
APD system is derived to be

ẏ35y210.45x3 .

Obviously, the corresponding response possesses the
Jacobian matrix as that in Eq.~8b!. Synchronization with
such a response system was reported as an example of
in Ref. @2#.

Example 2: Henon map. Similarly, SIS can also be estab
lished in discrete chaotic systems, for example the He
map formulated by

x1~n11!50.3x2~n!2x1~n!211.4,

x2~n11!5x1~n!.

We let

g~x!52x1
210.5x211

and

G:G~y,c!5F~y!1@c 0#T.

Then, by applying Eq.~7!, the response is

y1~n11!520.2y2~n!10.4

1sgn@2y1~n!210.5y2~n!11#uhx~n!u,

y2~n11!5y1~n!.

The Jacobian of the nonautonomous system is@1 0
0 20.2#, ei-

genvalues of which are all confined to within the unit circ
(ulu250.2). Since the Jacobian is time invariant, t
Lyapunov multiplier is the same as the modulus of the
genvalue. Therefore, the response is apassivesystem and
any deviation from the synchronization manifold will asym
totically vanish. It is verified in Fig. 5 that the synchroniz
tion error, defined byiy(n)2x(n)i , trails off exponentially
at a rate ofan (a'0.4472). In our numerical experiment
we find that the convergence of the synchronization e

FIG. 5. The SIS experiment performed on the coupled He´non
maps. Synchronization error defined byix(n)2y(n)i .
e
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obeys the exponential law for any randomly chosen ini
conditions, which means that the synchronization is of
robust kind@3#.

Recently, Zhou and Chen@18# proposed a digital chaotic
communication system based on in-phase and antiphase
chronized He´non maps, and successfully demonstrated
robustness of the system to additive noise and quantiza
error. In their scheme, the recovered chaotic carrier is
correlated but not identical to the original during ‘‘21’’
transmission even if no noise is present. A transient is ine
tably induced after each switch between in-phase transm
sion and antiphase transmission. In addition, the conditi
that allow their idea cannot be generally established in m
chaotic models and thus the method is not general. In c
trast with their synchronization scheme, SIS can be gener
established in unidirectionally coupled systems. The cha
carrier in either in-phase~11! or antiphase~21! transmis-
sion can be fully recovered, and switching between differ
transmission modes causes no transient during the sync
nization process, which means better performance in po
tial communication applications. Besides, the synchroni
tion error in our experiment on He´non maps also converge
to zero exponentially. Thus it can be predicted that robu
ness similar to that of Zhou and Chen can be obtained.

In the two examples, stability of the synchronization
examined by CLE’s. This relies on an ergodic average an
generally obtained numerically. In the following examp
we will show that the stability of the SIS can also be prov
rigorously using the method of contraction maps@10#.

Example 3: Logistic map. The dynamics of zero mea
logistic maps are

xn115122xn
2.

Let

g~x!5x.

One decomposition for SIS is

G~y,c!5122y224yc.

Using Eq.~7!, the response is then formulated as

yn115112yn
224uxnynu.

Note thatuyn112xn11u52(uxnu2uynu)2<2uyn2xnu2. Obvi-
ously, onceuyn2xnu,1/2, the quantityuyn2xnu, controlled
by a contraction map, converges to zero. From the ergo
property of chaotic systems, this condition can always
satisfied for randomly chosen initial conditions supposing
response is bounded. Thus SIS can be achieved.

IV. DISCUSSION

Note that, if g(•) and F(•) are odd symmetric, i.e.
g(x)52g(2x) and F(x)52F(2x), sincec(6x,hx)50,
and 6x are both trajectories of the system, two invaria
subspaces will emerge defined, respectively, byy5x and y
52x, the in-phase synchronization manifold and antipha
synchronization manifold. Owing to the symmetric prope
of the system, the coupled systems will have identical sta
ity on the two manifolds. In the event that both manifolds a
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stable, the eventual state of the coupled systems will be
either in-phase synchronization or antiphase synchroniza
depending only on the initiation point of the trajectory.
such systems, the boundary between the attracting basin
the two synchronization manifolds may have complica
fractal structure@19#. Thus any disturbance may cause t
trajectory to switch randomly between the two basins. T
may cause error in potential communication applicatio
However, in most cases the antiphase synchronization ca
easily removed from the coupled system by selecting a fu
tion g(•) that is not odd symmetric. For example, the ad
tion of a constant bias tog(x) generally causes a loss o
symmetry so that the antiphase synchronization,y52x, is
no longer an invariant subspace of the coupled systems
cause a trajectory initiated from the subspace cannot c
tinue to remain on it.

Robustness of chaotic synchronization always varies
different choices of model or different forms of coupling.
can be predicted that better robustness can be obtained
synchronization is globally stable having negative CLE
with as large a magnitude as possible. The choice of func
v(•) also influences the robustness of the synchronizat
although the Jacobian of the response is independentv
(•) in the proposed SIS system. The reason is that the J
bian only describes the variation of a deviation that is
sumed infinitesimal. When the deviation grows larger,v(•)
will affect the synchronization. For simplicity and ease
implementation by circuitry, we setv(•) to be the absolute
function. However, if we choosev(h) to be differentiable at
h50, due to the symmetric property of the function,v8(0)
will be equal to 0, which will cause the control signal pr
duced by the coupling function to be infinite. This can
avoided by turning off the control and letting the respon
run autonomously in the region abouthy50. Synchroniza-
tion can still be maintained provided the area of the regio
chosen appropriately to ensure negative CLE’s.

We have observed in numerical simulation that the co
munication system based on sign-independent synchron
Hénon maps is not very sensitive to parameter misma
This reminds us of another issue commonly concerned w
chaotic communication, that is, the security. It is requir
that the receiver system be very sensitive to parameter
match, so that a third party can lock into the communicat
with a probability approaching zero.~We assume that the
eavesdropper has known in advance the structure of the
tem and means to lock into the communication by tryi
every parameter in some defined region in the param
space!. On the other hand, robustness requires that the
ceiver system be insensitive to parameter mismatch and
ternal interference, otherwise the communication will
very difficult to establish in practice. The two aspects se
incompatible in this sense. Thus, as a trade off, such a c
munication system can still be considered secure by ass
ing that the third party does not know the structure of
system, or that the eavesdropper will be frustrated if he t
to retrieve the data using conventional linear signal proce
ing methods. Moreover, our design is based on act
passive decomposition, which allows the flexibility to u
high-dimensional hyperchaotic systems and will then mak
more difficult for a third party to detect the structure of t
system@8,9#. In the communication applications in whic
of
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continuous chaotic signals were used, the bipolar data si
can be smoothed out before modulation to avoid the sh
transition of the transmitted signal between in-phase and
tiphase transmissions that would be easy to detect. Such
nipulation will cause transients, but will not affect the corre
recovery of the data as long as the duration of one data b
set large enough compared with the transient time.

It should be pointed out that sign-independent synchro
zation is different from the antiphase synchronization
ported in@10,11,18#. In antiphase synchronization, the sta
variables of the two chaotic systems, namely drive and
sponse, have the same amplitude but opposite sign. In s
independent synchronization, however,in-phasesynchroni-
zation is established even if the phase of the driving signa
randomly inverted.

In this paper, an autosynchronization scheme has b
established aiming to solve the synchronization problem
chaotic spread spectrum communication systems where
driving signal is modulated by a bipolar data sequence. V
fication is conducted through numerical experiments p
formed on several commonly used chaotic models. By de
ing an identical Jacobian in a corresponding APD system,
conclude that sign-independent systems can be generall
tablished as a trivial case in unidirectionally coupled chao
systems. Our research is ongoing, and we shall explore
potential applications in the near future.
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APPENDIX

DG~x!5
]G„y,c~y,h!…

]y U
y5x

5
]G~y,c!

]y
1

]G~y,c!

]c

]c~y,h!

]y U
y5x

,

where h5bkg(x). Since c(y,h)5@v(h)2v„g(y)…#/
v8„g(y)…, then

]c~y,h!

]y
52

dv~g!

dg

dg~y!

dy

1

v8~g!

1@v~h!2v„g~y!…#
]

]y S 1

v8„g~y!…D .

Under the synchronization conditiony5x, we have

v~h!2v„g~y!…50,

c~y,h!50,

and note

v8~g![
dv~g!

dg
.
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Then

]c~y,h!

]y
52

dg~y!

dy
.

Recall thatG(x,0)5F(x). Then we get
l,

l,

tt

s

DG~x!5
dF~x!

dx
2

]G~x,c!

]c

dg~x!

dx U
c50

.
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